Multiscale Computational Models for Optogenetic Control of Cardiac Function

Oscar J. Abilez, Jonathan Wong, Rohit Prakash, Karl Deisseroth, Christopher K. Zarins, Ellen Kuhl

Abstract
The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease, paving the way towards various novel therapeutic applications. Here, we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally, we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector, and sorted and expanded the genetically engineered cells. Via directed differentiation, we created channelrhodopsin-expressing cardiomyocytes, which we subjected to optical stimulation. To quantify the impact of photostimulation, we assessed electrical, biochemical, and mechanical signals using patch clamping, multielectrode array recordings, and video microscopy. Computationally, we introduced channelrhodopsin-2 into a classic autorhythmic cardiac cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, the channel opens and allows sodium ions to enter the cell, inducing a fast upstroke of the transmembrane potential. We calibrated the channelrhodopsin-expressing cell model using single action potential readings for different photostimulation amplitudes, pulse widths, and frequencies. To illustrate the potential of the proposed approach, we virtually injected channelrhodopsin-expressing cells into different locations of a human heart, and explored its activation sequences upon optical stimulation. Our experimentally calibrated computational tool box allows us to virtually probe landscapes of process parameters, and identify optimal photostimulation sequences towards pacing hearts with light.

Keywords: optogenetics; electrophysiology; cardiomyocytes; stem cells; finite element method

INTRODUCTION
For more than 40 years, biologists have studied microorganisms that produce proteins to directly regulate the flow of charged ions across their plasma membrane in response to light. The first identified protein of this kind was the light-gated ion pump bacteriorhodopsin, transporting positively charged hydrogen ions across the cell membrane [36]. While bacteriorhodopsin naturally acts as an on-switch for electrically active cells, the second reported light-gated ion pump, halorhodopsin, transports negatively charged chloride ions, thereby acting as an off-switch [30]. The first reported light-gated ionic channel illustrated in Figure 1, channelrhodopsin, was only identified thirty years later [32, 33], but has since then revolutionized neuroscience.

Since the early nineties, we have known that phototaxis and photophobic responses in the green alga Chlamydomonas reinhardtii are mediated by rhodopsins with a microbial-type all-trans retinal chromophore [19, 26]. The photochemical isomerization of this all-trans retinal to 13-cis retinal is illustrated in Figure 2. It occurs at peak absorption wavelengths of 470 nm, opening the channel to sodium, potassium, and calcium cations in response to blue light. In the dark, the covalently bound retinal spontaneously relaxes to all-trans, providing closure of the channel and regeneration of the chromophore.

A breakthrough enabling technology was reported in 2005, when the light-sensitive target was first introduced genetically using engineered viruses [6, 45], a technique that is now known as optogenetics [9, 21]. Since then, optical tools for controlling the electrical activity of neurons have rapidly evolved, and are now gaining widespread use in neuronal research and medicine [28, 39]. While initial applications of optogenetics have been restricted exclusively to the neuronal system, optogenetic tools have now advanced to a level of maturity, where they can confidently be applied to other cells and organs [9]. Natural first candidates of choice are stem cells, and electrically active glial cells, muscle cells, and cardiac cells [1, 2].

The objective of this study is to demonstrate the potential of optogenetic control of the cardiac system using a hybrid experimental/computational technique. We demonstrate
that channelrhodopsin-2 (ChR2) can be expressed stably and safely in human embryonic stem cells (hESC), which can then be differentiated into cardiomyocytes (hESC-CARD2-CM). Upon photostimulation, ChR2 opens rapidly and allows sodium ions to enter the cell, inducing a defined transmembrane potential, commonly known as the action potential. We illustrate how ChR2 can be introduced into a computational autorhythmic cell model via an additional photocurrent governed by a light-sensitive gating variable to simulate this effect. The calibrated cell model is capable of reliably reproducing photostimulation amplitudes, pulse widths, and frequencies from single action potential recordings. Using a custom designed finite element model, we virtually inject our calibrated model cells into different locations of a human heart to illustrate the potential of the proposed approach towards pacing hearts with light.

Figure 1: Channelrhodopsin-2 (ChR2) is a light-gated cation channel native to the green alga Chlamydomonas reinhardtii. It consists of seven transmembrane proteins and absorbs light through its interaction with retinal. Here, we induce channelrhodopsin coupled to yellow fluorescent protein (eYFP) into undifferentiated human embryonic stem cells via a lentiviral vector and differentiate these cells into cardiomyocytes.

Figure 2: Channelrhodopsin-2 (ChR2) is activated by photoisomerization of all-trans retinal to 13-cis retinal at wavelengths of 470 nm. After photostimulation, ChR2 opens rapidly and allows sodium ions to enter the cell, inducing a defined transmembrane potential, commonly known as the action potential. We illustrate how ChR2 can be introduced into a computational autorhythmic cell model via an additional photocurrent governed by a light-sensitive gating variable to simulate this effect. The calibrated cell model is capable of reliably reproducing photostimulation amplitudes, pulse widths, and frequencies from single action potential recordings. Using a custom designed finite element model, we virtually inject our calibrated model cells into different locations of a human heart to illustrate the potential of the proposed approach towards pacing hearts with light.

MATERIALS AND METHODS

All experiments, methods, and protocols for this study were approved by the Stanford University Stem Cell Research Oversight (SCRO) committee.

Opsin sources and lentiviral vector

The channelrhodopsin-2 (ChR2) variant described here was optimized for mammalian expression by truncating the native sequence from 2241 bp to 933 bp, by changing the native histidine (H) codon (CAC) to the arginine (R) codon (CGC) coding for protein residue 134 of ChR2 (H134R), and by changing its gene’s codon usage to conform to human codon usage distribution [17, 46]. The lentiviral vector pLenti-EF1α-Chr2-eYFP-WPRE (pLECYT) was constructed as previously described [6, 46]. The pLenti plasmid contains the ubiquitously expressed elongation factor-1 alpha (EF1α), to obtain high levels of ChR2-eYFP expression in a mammalian system [1, 45]. All constructs have been fully sequenced previously for accuracy of cloning [6, 17]. High-titer lentivirus was produced using a second generation lentiviral system by co-transfection of 293FT cells (Invitrogen, Carlsbad, CA), the pLECYT viral vector described above, pCMVΔR8.74 (containing GAG and POL), pMD2.G (containing VSVg), and calcium phosphate as previously described [38, 46].

Stem cell culture and differentiation

Channelrhodopsin-expressing human embryonic stem cells (hESC^{CARD2}*) were grown as monolayers [1] on hESC-qualified Matrigel (BD Biosciences, San Jose, CA) and maintained in the pluripotent state through daily feeding with mTeSR1 media (StemCell Technologies, Vancouver, Canada) [29], supplemented with 1x penicillin / streptomycin (Invitrogen, Carlsbad, CA). Cardiomyocyte differentiation was usually begun 2-5 days after initially seeding hESC^{CARD2}* on Matrigel (BD Biosciences). At this time, the cells were transferred to RPMI-1640 media supplemented with B27, 1x non-essential amino acids, 1x penicillin/streptomycin, and 0.1 mM β-mercaptoethanol (all Invitrogen) and our differentiation method was begun using aspects of other methods previously described [25, 44]. On the first day of differentiation, Day 0, RPMI media with 50 ng/mL of Activin A (R&D Systems, Minneapolis, MN) was added to each well. On the subsequent day, Day 1, 5 ng/mL of BMP-4 (R&D Systems) was added to each well. On Day 3, fresh RPMI media was added to each well and was replaced every 48 hours until Day 11, when the cells were transferred to a DMEM media supplemented with 5% FBS (Invitrogen), 1x non-essential amino acids, 1x penicillin/streptomycin, and 0.1 mM beta-mercaptoethanol. This DMEM media was then replaced approximately every 48 hours. Cardiomyocytes generally began spontaneously beating between Days 9 and 20.

Fluorescence-activated cell sorting (FACS)

Fluorescence-activated cell sorting (FACS) was performed with a BD FACSaria instrument (BD Biosciences) equipped with BD FACSDiva 6.0 software. Up to 1×10⁶ cells transduced with the ChR2-eYFP lentivirus were sorted. Sorted cells were then resuspended in mTeSR1 media and replated on Matrigel-coated wells. After 2-3 days in culture, eYFP signal was confirmed via fluorescence microscopy. Analysis of FACS data was performed offline with FlowJo 7.6.1 software (Tree Star, Ashland, OR).

Polymerase chain reaction (PCR)

For undifferentiated hESC, PCR primers with gene product length for the following genes were used: GAPDH (152 bp), Oct-4 (169 bp), Nanog (154 bp), a region within eYFP (187 bp), a region spanning eYFP-Chr2 (197 bp), and a region within Chr2 (174 bp). Total RNA was isolated and RNA yield was then quantified using a Quant-iT kit (Invitrogen) and Qubit fluorometer (Invitrogen) per the manufacturer’s instructions. For cDNA synthesis, 1 µg total RNA, random hexamers, annealing buffer, 2x First-Strand Reaction Mix (Invitrogen) and SuperScript III/RNase OUT

Figure 1

Channelrhodopsin-2 (ChR2) is a light-gated cation channel native to the green alga Chlamydomonas reinhardtii. It consists of seven transmembrane proteins and absorbs light through its interaction with retinal. Here, we induce channelrhodopsin coupled to yellow fluorescent protein (eYFP) into undifferentiated human embryonic stem cells via a lentiviral vector and differentiate these cells into cardiomyocytes.

Figure 2

Channelrhodopsin-2 (ChR2) is activated by photoisomerization of all-trans retinal to 13-cis retinal at wavelengths of 470 nm. After photostimulation, ChR2 opens rapidly and allows sodium ions to enter the cell, inducing a defined transmembrane potential, commonly known as the action potential. We illustrate how ChR2 can be introduced into a computational autorhythmic cell model via an additional photocurrent governed by a light-sensitive gating variable to simulate this effect. The calibrated cell model is capable of reliably reproducing photostimulation amplitudes, pulse widths, and frequencies from single action potential recordings. Using a custom designed finite element model, we virtually inject our calibrated model cells into different locations of a human heart to illustrate the potential of the proposed approach towards pacing hearts with light.
Enzyme Mix (Invitrogen), and RNase/DNase-free water were combined then incubated per the manufacturers instructions. For PCR amplification, AccuPrime Pfx SuperMix (Invitrogen), custom primers for pluripotency markers as described above, and cDNA were combined. Non-template control (NTC) reactions were prepared by substituting cDNA with distilled water. Samples were transferred to a thermal cycler and the following cycling program was used: i) initial denaturation at 95°C for 2 min; ii) 30 cycles of 95°C, 30 sec; 60°C, 30 sec; 68°C, 1 min; iii) final extension at 68°C for 5 min. Finally, PCR products, a 100 bp ladder (Invitrogen), and NTC were loaded in separate wells of a 2% agarose E-gel with SYBR-Safe (Invitrogen) and run for 30 min. Bands were then visualized with an E-gel iBase blue light transilluminator (Invitrogen).

Immunocytochemistry (ICC)

Human embryonic stem cell derived cardiomyocytes (hESC-CM) were labeled with primary antibodies for the cardiac markers α-actinin (Sigma, IgG, 1:500) and TnI (Millipore, IgG, 1:200). The secondary antibody used was goat anti-mouse IgG-Alexa 594 (Invitrogen, 1:1000) for both α-actinin and TnI. Cells were counterstained with DAPI (Sigma) for 10 minutes. An AxioObserver Z1 (Carl Zeiss, Göttingen, Germany) inverted microscope was used to visualize hESC-CMs. The Zeiss microscope was equipped with a Lambda DG-4 300 W Xenon light source (Sutter Instruments, Novato, CA), an ORCA-ER CCD camera (Hamamatsu, Bridgewater, NJ), and AxioVision 4.7 software (Zeiss).

Optical stimulation

Optical stimulation was delivered to hESC-CM via a Lambda DG-4 300 W Xenon light source or with a 470 nm LED at 7 mW/mm² (Thorlabs, Newton, NJ). For multielectrode array (MEA) electrophysiology, optical stimulation consisted of a monophasic waveform with peak amplitude of 0, 12.5, 25, 50, or 100% of maximum power (10 mW/mm² for 40x objective), pulse width of 100 ms, and frequency of 0.5, 1.0, or 1.5 Hz. For whole-cell patch clamp (PC) electrophysiology, optical stimulation consisted of a monophasic waveform with peak amplitude of 0, 12.5, 25, 50, or 100% of maximum power (10 mW/mm² for 40x objective) and a pulse width of 1000 ms. Optical power delivered to cells at each microscope objective was measured with a digital power meter (Thorlabs) at the focal plane of the objective.

Multielectrode array (MEA) electrophysiology

Multielectrode arrays (MEA) with sixty 30 µm titanium nitride (TiN) electrodes equally spaced 200 µm apart, with indium tin oxide (ITO) leads, and with an internal reference (Thin MEA 200/30 iR ITO, Multi Channel Systems, MCS GmbH, Reutlingen, Germany) were coated with 25 µg/mL fibronecin (Sigma). Desired cardiomyocyte (CM) colonies were then manually dissected off their plates, transferred to the MEAs, and allowed to attach. A single MEA containing cells and Tyrode’s solution (Sigma) was then placed in the amplifier (MEA 1060-Inv-BC, MCS) for recordings. Signals were acquired at 1kHz from a USB-6225 M Series DAQ (NI, Austin, TX). Videos of contracting CM were captured at 30 fps for a duration of 1-30 s with a Retiga 2000R color cooled camera (QImaging). The MEA amplifier was configured with MEA Select 1.1.0 software (MCS) and electrical and video signals were acquired and controlled with a custom program created with LabVIEW 2009 (NI). To visualize hESC-CM contractions, a custom edge detection algorithm in LabVIEW 2009 (NI) was used to detect rising and falling edge locations along a grayscale profile generated from a user-defined region of interest based on a user-defined threshold value.

Patch clamp (PC) electrophysiology

hESC-CM were recorded by means of whole-cell patch clamp (PC), using an Axon Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA), an Axon Digidata 1440A data acquisition system (Molecular Devices), and pClamp 10 software (Molecular Devices) as previously described [17, 31]. Cells were visualized and optically stimulated on an Olympus upright microscope equipped with a 470 nm LED (Thorlabs) and EXFO X-Cite halogen light source (Lumen Dynamics, Ontario, Canada) through a 40X/0.8 NA water immersion objective. When using the halogen light source coupled to a shutter (VCM-D1, Uniblitz, Rochester, NY), an excitation filter of HQ470/40, dichroic Q495LP (Chroma) was used for delivering blue light for ChR2 activation (10, 5, 2.5, 1.25 mW/mm²). eYFP was visualized with a standard eYFP filter set (excitation 500/20, dichroic 515LP, emission 535/30; Chroma). Borosilicate glass (Sutter Instruments) pipette resistance ranged from 3-6 MΩ. Whole-cell PC recordings were performed as previously described [17]; intracellular solution: 129 mM K-glutamate, 10 mM HEPES, 10 mM KCl, 4 mM MgATP, 0.3 mM NaGTP, titrated to pH 7.2; extracellular Tyrodes: 125 mM NaCl, 2 mM KCl, 3 mM CaCl₂, 1 mM MgCl₂, 30 mM glucose, and 25 mM HEPES, titrated to pH 7.3. For voltage clamp recordings cells were held at -70mV. All experiments were performed at room temperature, 22-25°C. Fluorescent cells were patch immersed in Tyrodes solution containing 5-10 µM blebbistatin to eliminate contractility while preserving electrical activity [12]. Patch clamp data was analyzed using Clampfit 10.2 (Molecular Devices).

Mathematical model of channelrhodopsin photocycle

To model the channelrhodopsin photocycle, we adopt a three-state photocycle model [20, 35], which is characterized through an open, a closed but still recovering, and a fully closed state [33], as illustrated in Figure 3. Upon photo absorption, molecules which are in the closed state \(g_C \) undergo a fast transition into the open state \(g_{ChR2} \). After for some time, molecules spontaneously turn into the recovering state \(g_r \) where the ion channels are closed, but the molecules are not yet ready to photoswitch again. After a recovery period, the molecules finally return to the closed state \(g_C \), ready to undergo a new photocycle when subjected to light.

![Figure 3: Three-state model for the channelrhodopsin photocycle.](image-url)

Figure 3: Three-state model for the channelrhodopsin photocycle. Upon photo absorption, molecules in the closed state \(g_C \) undergo a fast transition into the open state \(g_{ChR2} \). After for some time, molecules spontaneously turn into the recovering state \(g_r \) where the ion channels are closed, but the molecules are not yet ready to photoswitch again. After a recovery period, the molecules finally return to the closed state \(g_C \), ready to undergo a new photocycle when subjected to light.
again. After a recovery period, the molecules finally return to the closed state g_r, ready to undergo a new photocycle when exposed to light [34]. Figure 3 suggests the following first order model for the channelrhodopsin photocycle,

\[
\begin{align*}
\dot{g}_{\text{ChR2}} &= e^{-\text{pho}} g_c - \Gamma_\text{f} g_{\text{ChR2}} \\
\dot{g}_r &= \Gamma_\text{f} g_{\text{ChR2}} - \Gamma_c g_r \\
\dot{g}_c &= \Gamma_c g_r - e^{-\text{pho}} g_c
\end{align*}
\]

(1)

where Γ_f and Γ_c are the rates of recovery and full closure, e is the quantum efficiency of the channelrhodopsin system, and pho is the number of photons hitting the cell per second. Herein, g_{ChR2}, g_r, and g_c define the fraction of molecules in the open, recovering, and closed states, scaled such that they sum up to one, $g_{\text{ChR2}} + g_r + g_c = 1$. This implies that the photocycle system (1) can be characterized through two independent variables, e.g., the fraction of molecules in the open and in the recovering states.

\[
\dot{g}_{\text{ChR2}} = e^{-\text{pho}} - \left[e^{-\text{pho}} + \Gamma_\text{f} \right] g_{\text{ChR2}} - e^{-\text{pho}} g_c
\]

\[
\dot{g}_r = \Gamma_f g_{\text{ChR2}} - I_c g_r
\]

(2)

We identify the state g_{ChR2} as the channelrhodopsin gating variable and integrate it into a well-defined autorhythmic cell model [11] characterized through $n_{\text{gate}} = 10$ gating variables $g_{\text{gate}} = \left[g_{\text{Na}}, g_{\text{Na}}, g_{\text{K}}, g_{\text{Ca}}, g_{\text{Na}}, g_{\text{Na}}, g_{\text{K}}, g_{\text{Ca}}, g_{\text{Na}}, g_{\text{K}}, g_{\text{Ca}} \right]$, which may be functions of the current membrane potential ϕ.

Figure 4: Ionic model of genetically engineered light sensitive cardiac cell. The electrochemical state of the cell is characterized in terms of $n_{\text{ion}} = 8$ ion concentrations, $c_{\text{ion}} = \{c_{\text{Na}}, c_{\text{Na}}, c_{\text{K}}, c_{\text{Ca}}, c_{\text{Na}}, c_{\text{Na}}, c_{\text{K}}, c_{\text{Ca}}\}$, the extracellular and intracellular sodium, potassium, and calcium concentrations, and the sarcoplasmic reticulum calcium uptake and release. Ion concentrations are controlled through $n_{\text{ion}} = 12$ ionic currents, $I_{\text{ion}} = \{I_{\text{Na}}, I_{\text{Na}}, I_{\text{K}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Na}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Na}}, I_{\text{Ca}}, I_{\text{Ca}}\}$, which are, mathematically speaking, functions of the transmembrane potential ϕ, the individual gating variables g_{gate}, and the ion concentrations c_{ion}.

Mathematical model of ionic currents

The channelrhodopsin gating variable g_{ChR2} introduced in the previous section governs the channelrhodopsin current I_{ChR2}, for which we make the following ansatz.

\[
I_{\text{ChR2}} = C_{\text{ChR2}} g_{\text{ChR2}} [\phi - \phi_{\text{ChR2}}]
\]

(5)

Here, C_{ChR2} is the channelrhodopsin conductance and ϕ_{ChR2} is the reversal potential of channelrhodopsin, see supplemental material. We integrate the channelrhodopsin current I_{ChR2} into an autorhythmic cardiac cell model [10, 11], defined through a total of $n_{\text{corr}} = 12$ ionic currents,

\[
I_{\text{corr}} = \{I_{\text{Na}}, I_{\text{Ca}}, I_{\text{K}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Ca}}, I_{\text{Ca}}\}
\]

(6)

which are, mathematically speaking, functions of the transmembrane potential ϕ, the individual gating variables g_{gate}, and the ion concentrations c_{ion}.

\[
I_{\text{corr}} = I_{\text{corr}}(\phi, g_{\text{gate}}, c_{\text{ion}})
\]

(7)

In particular, these are eight transmembrane currents, the fast sodium current I_{Na}, the background sodium current I_{Na}, the hyperpolarization activated potassium current and sodium currents I_{Ca}, the sodium calcium exchanger current I_{NaCa}, the sodium potassium pump current I_{NaK}, the channelrhodopsin sodium current I_{ChR2}, the delayed rectifying potassium current I_{K}, the background potassium current I_{K}, the long-lasting L-type calcium current I_{CaL}, the transient T-type calcium current I_{CaT}, and two sarcoplasmic reticulum currents, the calcium uptake I_{up} and the calcium release I_{rel}.

Mathematical model of ionic concentrations

From a chemical point of view, light induces a channelrhodopsin current I_{ChR2}, which directly impacts the intracellular sodium concentrations c_{Na}.

\[
c_{\text{Na}} = -I_{\text{Na}} + I_{\text{Na}} + I_{\text{Na}} + 3I_{\text{NaCa}} + 3I_{\text{NaK}} + I_{\text{CaT}} (8)
\]

where V is the cytosolic volume and F is the Faraday constant. The sodium concentration will directly, and indirectly through the resulting changes in the transmembrane potential ϕ, affect all other ionic concentrations in the cell. The biochemistry of our cell model is characterized through $n_{\text{ion}} = 8$ ion concentrations,

\[
c_{\text{ion}} = \{c_{\text{Na}}, c_{\text{Na}}, c_{\text{K}}, c_{\text{Ca}}, c_{\text{Na}}, c_{\text{Na}}, c_{\text{K}}, c_{\text{Ca}}\}
\]

(9)

defined in terms of their evolution equations,

\[
\dot{c}_{\text{ion}} = \dot{c}_{\text{ion}}(\phi, g_{\text{gate}}, c_{\text{ion}})
\]

(10)
which are parameterized in terms of the transmembrane potential \(\phi \), the gating variables \(g_{\text{gate}} \), and the ion concentrations \(c_{\text{ion}} \) themselves. In particular, \(c_{\text{Na}}, c_{\text{K}}, \text{ and } c_{\text{Ca}} \) are the extracellular sodium, potassium, and calcium concentrations, \(c_{\text{Na}}^{\text{i}}, c_{\text{K}}^{\text{i}}, \text{ and } c_{\text{Ca}}^{\text{i}} \) are the intracellular sodium, potassium, and calcium concentrations, and \(c_{\text{CaP}} \text{ and } c_{\text{CaR}}^{\text{i}} \) are the sarcoplasmic reticulum calcium uptake and release, see supplemental material for details about the cell model and its material parameters.

Mathematical model of action potential propagation

From an electrical point of view, light induces a channelrhodopsin current \(I_{\text{ChR2}} \), which directly impacts the action potential propagation \(\phi \) in the heart. Unlike the local ion concentrations for single cells, however, the action potential is a global field variable [13]. Its spatio-temporal evolution

\[
\dot{\phi} = f^b(\phi, g_{\text{gate}}{c_{\text{ion}}}) + \text{div } q(\phi) \tag{11}
\]

driven by a local source term \(f^b \) at the single cell level, and by a global flux term, \(\text{div } q \), the divergence of the propagation vector \(q \) at the organ level. The local source term

\[
f^b = -\frac{1}{\epsilon} \left\{ I_{\text{Na}} + I_{\text{Na},\text{in}} + I_{\text{f}} + I_{\text{Na,Ca}} + I_{\text{Na,K}} + I_{\text{ChR2}} + I_{\text{K}} + I_{\text{K}}^{\text{L}} + I_{\text{Ca,trans}} + I_{\text{Cat}} \right\} \tag{12}
\]

is directly related to the negative sum of all transmembrane currents scaled by the individual cell membrane capacitance per unit surface area \(C \). To account for the nonlocal nature of propagating excitation waves in the heart, we introduce the propagation vector

\[
q = D \cdot \nabla \phi \tag{13}
\]

through the second order diffusion tensor \(D \) scaling the gradient of the action potential field \(\nabla \phi \), see supplemental material for the finite element based solution of the action potential propagation problem [8, 13, 43].

RESULTS

Figure 5 illustrates our ability to stably transduce undifferentiated hESC with a ChR2-eYFP lentiviral vector. The resulting hESC-ChR2+ remain pluripotent and can differentiate into hESC-ChR2+-CM. Figure 5a, the PCR shows that hESC-ChR2+ express the pluripotent Oct-4 gene (169 bp, lane 4) and Nanog gene (154 bp, lane 5), indicated through the solid blue box. In addition, amplification within the ChR2 gene (174 bp, lane 6), across the ChR2-eYFP gene (197 bp, lane 7), and within the eYFP gene (187 bp, lane 8), confirms stable transduction of the ChR2-eYFP lentivirus in undifferentiated hESC-ChR2+,” solid yellow box. A ladder (100 bp, lane 1) confirms the predicted sizes of PCR products. Non-template control (lane 2) and GAPDH (152 bp, lane 3) serve as negative and positive controls, respectively. B. Pluripotent hESC-ChR2+ stain positive for alkaline phosphatase (red). C. Fluorescence microscopy shows hESC-ChR2+ positive eYFP signal (green). D. hESC-ChR2+-CM have positive TnI signals (red), consistent with a CM phenotype. DAPI staining (blue) demonstrates the position of nuclei. E. Transmission electron microscopy shows sarcomeres with associated z-lines (z) and mitochondria (m) in hESC-ChR2+-CM. F. Light microscopy shows three hESC-ChR2+-CM colonies (dashed white circles) on a multielectrode array.

Figure 6 demonstrates the experimental and computational sensitivity of hESC-ChR2+-CM showing sarcomeres with characteristic z-lines and mitochondria. Figure 5f shows the light microscopy of three hESC-ChR2+-CM colonies, indicated through dashed white circles, on a multielectrode array.

Figure 6 demonstrates the experimental and computational sensitivity of hESC-ChR2+-CM with respect to different light intensities. With light on, the photocurrent \(I_{\text{ChR2}} \) increases rapidly, peaks, and decays towards a characteristic plateau value. With light off, the photocurrent \(I_{\text{ChR2}} \) drops rapidly and decays to zero. Figure 6, top, illustrates the varying light intensities from 12.5% to 25%, 50%, and 100% for which we measure the photocurrent \(I_{\text{ChR2}} \) upon whole cell voltage clamp. Figure 6, middle, demonstrates the experimentally measured photocurrent \(I_{\text{ChR2}} \) which increases
Figure 6: Experimental and computational sensitivity of hESC-ChR2-CM with respect to light intensity. With the light turned on, the photocurrent I_{ChR2} increases rapidly, peaks, and decays towards a characteristic plateau value. With the light turned off, the photocurrent I_{ChR2} drops rapidly and decays to zero. Light intensity is varied from 12.5% to 25%, 50%, and 100% (top). Whole cell voltage clamp reveals an increased photocurrent I_{ChR2} as the light intensity increases. The computational hESC-ChR2-CM model captures the light sensitivity and displays increased photocurrents I_{ChR2} with increased light intensity (bottom).

with increasing light intensity. Figure 6, bottom, shows the calibrated computational cell model which captures the characteristic light sensitivity, displaying increased photocurrents I_{ChR2} with increased light intensity, see supplemental material.

Figure 7 demonstrates the experimental and computational sensitivity of hESC-ChR2-CM with respect to different stimulation frequencies. Blue lines illustrate the applied light stimulation at 100% intensity, at 100 ms pulse width. Black and red lines display the experimentally measured electrical field potentials and mechanical contractions. Green lines display the computationally predicted electrical transmembrane potentials. We probe the cells with light stimulation at 0.5 Hz, top, 1.0 Hz, middle, and 1.5 Hz, bottom. Electrical and mechanical signals during light stimulation, shown in the center, are significantly different from pre- and post-stimulation signals at all frequencies, shown at the beginning and end of the readings. The computational hESC-ChR2-CM model excellently captures the electrical signal both during light stimulation, and pre- and post-stimulation. The two initial double spikes in the green curves of the computational model paced at 0.5 Hz are caused by an interference of the photostimulation with the cell’s natural frequency of 0.7 Hz. This interference is only present when cells are paced below their natural frequency, and does not occur during photostimulation at 1.0 Hz and 1.5 Hz.

Figure 8 illustrates the potential of the proposed technology to virtually pace a human heart with light. The finite element model of the heart created from magnetic resonance images consists of 3,129 nodes and 11,347 three-dimensional tetrahedral elements [24], see supplemental material. Figure 8, top, shows the effects of atrioventricular (AV) node photostimulation initiated through hESC-ChR2-CM, which are virtually injected into the basal region of the septum, while all other regions are modeled as standard ventricular CM. For AV node pacing, the depolarization wave is initiated at the AV node, travels down the septum, and then activates the left and right ventricles. Figure 8, bottom, shows the effects of bi-ventricular (bi-VP) pho-
AV-node photostimulation of through hESCChR2-CM

![AV-node photostimulation](image1)

bi-VP photostimulation through hESCChR2-CM

![bi-VP photostimulation](image2)

Figure 8: Virtual activation sequences of light-paced hearts. Atrioventricular (AV) node photostimulation (top) is initiated through hESCChR2-CM, virtually injected into the basal region of the septum, while all other regions are modeled as standard ventricular CM. A depolarization wave forms at the AV node, travels down the septum, and activates the left and right ventricles. Bi-ventricular (bi-VP) photostimulation (bottom) is initiated through hESCChR2-CM, virtually injected into the lateral wall of the left and right ventricles, while all other regions are modeled as standard ventricular CM. A depolarization wave forms at the lateral left and right ventricular walls, travels along the ventricles, and activates the apex and the septum. The color code indicates the magnitude of the transmembrane potential \(\Phi \) varying from -90mV (blue) to +20mV (red).

DISCUSSION

In Figure 5, we have shown that ChR2 can be expressed stably and safely in hESC-CM to drive CM depolarization via photostimulation. Using a lentiviral vector [6, 46], we have introduced ChR2 coupled to YFP into undifferentiated hESC. After confirming expression via immunocytochemistry, we have expanded these ChR2-expressing cells and demonstrated their pluripotency using PCR. Via directed differentiation, we have created hESCChR2-CM, which we have then subjected to optical stimulation. We have successfully recorded their electrical, biochemical, and mechanical signals using patch clamping, MEA recordings, and video microscopy. These data have allowed us to calibrate our computational hESCChR2-CM model.

In Figure 6, we have demonstrated the sensitivity of both experimental and computational photocurrents with respect to the stimulating light intensity [34]. Both graphs illustrate the characteristic rapid increase to the intensity-dependent peak current, followed by a slower decrease towards the intensity-dependent asymptotic plateau value [22, 40].

While the translation of optogenetic techniques into clinical practice may still have many technical hurdles to pass, the technology itself can already serve as a valuable research tool in cardiac electrophysiology [1]. Traditional tools based on the simultaneous use of electrical stimulation and electrical recording typically suffer from unavoidable artifacts [27]. The inherent orthogonality of optical and electrical techniques allows us to significantly reduce these spurious errors when using optical stimulation combined with electrical recordings, as shown in Figure 7.

A tremendous potential of opsins-based systems for optical manipulation lies in their inherent ability to not only turn cells on using channelrhodopsin as a blue-light-gated ion channel transporting positively charged cations along their concentration gradients [9], but also to turn cells off using halorhodopsin as a yellow-light-driving ion pump transporting negatively charged chloride ions against their concentration gradients [21]. A promising first study in zebrafish has shown that a combination of channelrhodopsin and halorhodopsin allows for optically controlling heart rate, reversing cardiac conduction, and inducing disease-like arrhythmias [2].

Computational modeling allows us to predict the response of living cells, both in isolation and in interaction with their environment. In Figure 8, we have demonstrated our very first proof-of-principle, using finite element modeling in an attempt to bridge the scales from cells to systems [16]. Finite element based models allow us to combine virtually any cell type [7] on virtually any geometry [42]. Here, they allow us to predict the activation sequences in the human heart for different pacing sites [15].

Pacing hearts in silico by means of photostimulation will allow us to virtually probe different scenarios [37, 14] towards our ultimate goal of light pacing hearts in vivo [2]. In contrast to electrical pacemakers, light delivery is minimally invasive, genetically targeted, and temporally precise. Most importantly, light can be delivered at a distance.

Unlike pacing leads for electrical stimulation, which are known to have a high failure rate due to mechanical fatigue [23], the light source for optical stimulation does not have to sit directly on the continuously moving heart muscle. Light pacing might therefore be an attractive remote, less invasive, and more durable alternative to current electrical pacing leads [41].
Limitations
This manuscript presents our first attempts towards pacing the heart with light using a multiscale approach. On the photoreceptor level, we have adopted a classic three-state model for the ChR2 photocycle, which was initially proposed for ChR2-expressing neurons [33]. This conceptually elegant model has allowed us to reliably reproduce the characteristic features of a light-evoked response in ChR2-expressing hESC-CM. However, the extension to a four [35] or five [3] state model, which are known to reproduce the bi-exponential decay of the light-off current more accurately [20], is conceptually straightforward. In terms of photostimulation, we have applied pulse widths of 100 and 1000 ms. These relatively long durations of channel opening may increase sodium overload and adversely influence action potential profiles. Since the rapid upstroke of the action potential takes place in the first 10 ms [11], the stimulation pulse width could potentially be decreased to 10 ms or less [1], which would favorably limit light exposure time, see supplemental material. Novel developments in ultrafast optogenetics suggest using the rationally engineered channelrhodopsin ChETA, which provides high fidelity optical control of spiking at high frequencies and eliminates plateau potentials during continued stimulation [18].

On the ion channel level, we have assumed that the ChR2 current is driven exclusively by concentration gradients in the sodium concentration [35]. Accordingly, we have modeled ChR2 to be selectively permeable to sodium ions only. While ChR2 is known to be a general cation channel [39], its effects on potassium and calcium remain poorly characterized [4]. However, making the channel permeable to other monovalent and divalent cations [33], would require only modular changes in the mathematical model. On the cellular level, due to the lack of mathematical models for stem cell-derived cardiac cells, we have adopted a widely used and well characterized model for mature cardiac cells [10, 11]. A recent study confirmed that ChR2 expresses its characteristic features independent of the particular expression system [4]. Therefore, we have modified the mature cell model via an additional photocurrent governed by a light-sensitive gating variable. A thorough identification of the individual channel characteristics of hESC-CM and their quantitative comparison with mature CM and hESC\(^{\text{ChR2}}\)-CM remain to be addressed to fully validate our conceptual approach [31].

On the whole heart level, the simulation of the light-paced heart is admittedly relatively simplistic. Although our algorithm can, in principle, handle arbitrary mixtures of different cell types [7], here, we have assumed that the injected cells are pure hESC\(^{\text{ChR2}}\)-CM. We have adopted a common procedure to model cell injection [42], which does not address additional obstacles commonly associated with cell delivery such as cell migration away from the injection site or cell survival in the myocardial wall. At this stage, our model also fails to appropriately predict the effects of light scattering by tissue and absorption by blood. Light scattering is a general barrier to in vivo translation, and efforts are underway by our groups and others to red-shift the opsins and maximize the efficiency of light delivery through tissues [5, 17].

CONCLUSION
At an unprecedented temporal and spatial precision, optogenetic tools now enable us to manipulate electrically active cells. This study capitalizes on recent developments in optics and genetics, supplemented by novel technologies in stem cell biology, electrophysiology, and computational mechanics. It documents our first attempts to introduce a light-sensitive ion channel in human embryonic stem cell derived cardiomyocytes, with the ultimate goal to control the cardiac system by means of photostimulation. Unlike traditional electrical stimulation, optogenetics allows us to precisely control the selective permeability of the plasma membrane, its conductivity with respect to different ions, its sensitivity to light of different wavelengths, and the spatio-temporal evolution of different opening and closing profiles. Given this incredible freedom, we need to establish an economical strategy to optimize the matrix of input variables. Predictive computational models allow us to virtually probe landscapes of process parameters and identify optimal photostimulation sequences in various different tissues and organs. Here, as a very first proof-of-principle, we virtually inject photosensitive cells into different locations of a human heart model, and pace the heart with light.

We believe that this concept will be widely applicable to systematically manipulate electrically active cells and, ultimately, support the design of novel therapies for various types of neuronal, musculoskeletal, pancreatic, and cardiac disorders such as depression, schizophrenia, cerebral palsy, paralysis, diabetes, pain syndromes, and cardiac arrhythmias.

Acknowledgements
We thank Joshua Baugh and Madhu Gorrepati for technical assistance. This material was supported by the Stanford ARTS Fellowship to Oscar Abilez, by the Stanford Graduate Fellowship to Jonathan Wong, by the NSF Grant EFRI-CBE-0735551 and by the CIRM Grant RC1-00151 to Christopher Zarins, and by the NSF CAREER Award CMMI-0952021 and the NIH Grant U54 GM072970 to Ellen Kuhl.

REFERENCES

SUPPLEMENTAL MATERIAL

Mathematical model of autorhythmic cardiac cells

Our cardiac cell model is based on a well-characterized and frequently used autorhythmic cell model [4], see also [3, 5, 12], enhanced by the channelrhodopsin photocurrent I_{ChR2} and its corresponding gating variable g_{ChR2}. In particular, we characterize the cell through $n_{\text{ion}} = 8$ ion concentrations,

$$c_{\text{ion}} = \left[c_{\text{Na}}^c, c_{\text{K}}^c, c_{\text{Ca}}^c, c_{\text{Na}}^i, c_{\text{K}}^i, c_{\text{Ca}}^i, c_{\text{Na}}^\text{up}, c_{\text{Ca}}^\text{rel} \right]$$

(1)

where c_{Na}^c, c_{K}^c, and c_{Ca}^c are the extracellular sodium, potassium, and calcium concentrations, c_{Na}^i, c_{K}^i, and c_{Ca}^i are the intracellular sodium, potassium, and calcium concentrations, and c_{Na}^up and c_{Ca}^rel are the sarcoplasmic reticulum calcium uptake and release. Changes in these concentrations are brought about by an in- and outflux of ions which we describe through a total of $n_{\text{ext}} = 12$ ionic currents.

$$I_{\text{ext}} = \left[I_{\text{Na}}, I_{\text{NaCa}}, I_{\text{NaK}}, I_{\text{ChR2}}, I_{\text{K}}, I_{\text{Ca}}, I_{\text{CaT}}, I_{\text{up}}, I_{\text{rel}} \right]$$

(2)

In particular, these are the fast sodium current I_{Na}, the background sodium current I_{NaB}, the hyperpolarization activated sodium and potassium currents I_{T}, the sodium calcium exchanger current I_{NaCa}, the sodium pump current I_{NaK}, the channelrhodopsin sodium current I_{ChR2}, the delayed rectifying potassium current I_{K}, the background potassium current I_{KG}, the long-lasting L-type calcium current I_{CaL}, the transient T-type calcium current I_{CaT}, and two sarcoplasmic reticulum currents, the calcium uptake I_{up} and the calcium release I_{rel}. The activation and inactivation of these currents is governed by the transmembrane potential ϕ, and $n_{\text{gate}} = 10$ gating variables.

$$g_{\text{gate}} = \left[g_{\text{m}}, g_{\text{h}}, g_{\text{ChR2}}, g_{\text{L}}, g_{\text{R}}, g_{\text{NaK}}, g_{\text{Ca}}, g_{\text{CaT}}, g_{\text{rel}} \right]$$

(3)

In particular, these are the fast sodium channel activation gate g_{m}, the fast sodium channel inactivation gate g_{h}, the channelrhodopsin activation gate g_{ChR2}, the hyperpolarization activated inward current activation gate g_{T}, the delayed rectifier current activation gate g_{L}, the long-lasting calcium channel activation gate g_{CaL}, the voltage dependent long-lasting calcium channel inactivation gate g_{rel}, the calcium dependent long-lasting calcium channel inactivation gate g_{CaT}, the transient calcium channel activation gate g_{CaT}, and the transient calcium channel inactivation gate g_{rel}. We will now specify the mathematic model for the concentrations c_{ion}, currents I_{ext}, and gating variables g_{gate}. For the sake of completeness, we summarize the symbols, the physical interpretations, and the initial values of the electrical potential and all chemical state variables in Table 1. In Table 2 we summarize all model parameters, their physical interpretations, and their parameter values [4].

Sodium concentrations, currents, and gating variables

The intra- and extracellular sodium concentrations

$$\dot{c}_{\text{Na}}^c = - $$

(4)

are evolving in response to the fast sodium current I_{Na}, the background sodium current I_{NaB}, the hyperpolarizing-activated sodium current I_{NaA}, the sodium calcium exchanger current I_{NaCa}, the sodium potassium pump current I_{NaK}, the delayed rectifying potassium current I_{K}, and the channelrhodopsin current I_{ChR2}, scaled by the intra- and extracellular volumes V^i and V^e, and the Faraday constant F. In contrast to atrial and ventricular cells, in autorhythmic cells, the fast sodium current

$$I_{\text{Na}} = C_{\text{Na}} g_{\text{m}}^3 g_{\text{h}} \left[\phi - \phi_{\text{Na}} \right]$$

(5)

only seems to contribute marginally to the rapid upstroke of the action potential. It is controlled by the fast activation and inactivation gates g_{m} and g_{h}.

$$g_{\text{m}} = \alpha_{\text{m}} \left[1 - g_{\text{m}} \right] - \beta_{\text{m}} g_{\text{m}}$$

$$g_{\text{h}} = \alpha_{\text{h}} \left[1 - g_{\text{h}} \right] - \beta_{\text{h}} g_{\text{h}}$$

(6)

The net inward current of sodium underlying cellular depolarization can be attributed to the time-independent background sodium current I_{NaB}. Here, we model this background current through a linear current-voltage relationship.

$$I_{\text{NaB}} = C_{\text{NaB}} \left[\phi - \phi_{\text{Na}} \right]$$

(7)
It has been postulated that the presence of an inward current activated by hyperpolarization is crucial to pacemaker activity [3]. The hyperpolarization activated sodium current is modeled as

$$I_{Na} = g_y [c_K^{1.83}/(c_K^{1.83} + K_{m,t}^{1.83})] C_{Na} [\phi - \phi_{Na}]$$ \hspace{1cm} (8)$$
governed by the activation gate g_y.

$$g_y = \alpha_y [1 - g_y] - \beta_y g_y$$
$$\alpha_y = 0.36[\phi + 148.8]/[\exp(0.066[\phi + 148.8]) - 1]$$
$$\beta_y = 0.1[\phi + 87.3]/[1 - \exp(-0.21[\phi + 87.3])]$$ \hspace{1cm} (9)$$
The sodium calcium exchanger I_{NaCa} generates a net inward current and operates as a calcium efflux mechanism using energy from the sodium electrochemical gradient to exchange three Na$^+$ ions for one Ca$^{2+}$ ion. It is characterized through a nonlinear relation,

$$I_{NaCa} = k_{NaCa} [x_3 k_2 - x_1 k_2]/[x_1 + x_2 + x_3 + x_4]$$ \hspace{1cm} (10)$$
in terms of the following expressions.

$$x_1 = k_{41} k_{34} [k_{21} + k_{21} \] + k_{21} k_{32} [k_{43} + k_{41}]$$
$$x_2 = k_{32} k_{43} [k_{41} + k_{42}] + k_{41} k_{12} [k_{34} + k_{32}]$$
$$x_3 = k_{14} k_{43} [k_{23} + k_{23}] + k_{23} k_{34} [k_{43} + k_{41}]$$
$$x_4 = k_{23} k_{34} [k_{14} + k_{12}] + k_{14} k_{21} [k_{34} + k_{32}]$$

$$k_{41} = c_{Na}^{i}/[K_{Na}^{i} + c_{Na}^{i}]$$
$$k_{12} = [(c_{Ca}^{i}/K_{Na}^{i}) \exp((-Q_{Na}^{i} \phi F)/(RT))]/d$$
$$k_{14} = [(c_{Ca}^{i}/K_{Na}^{i}) + c_{Na}^{i}/[K_{Na}^{i} K_{Na}^{i} K_{Na}^{i}]] \exp((Q_{Na}^{i} \phi F)/(2RT))]/d$$
$$k_{41} = \exp((-Q_{Na}^{i} \phi F)/(2RT))$$

$$d' = 1 + c_{Ca}^{i}/K_{Ca}^{i} + c_{Ca}^{i}/K_{Ca}^{i} \exp((-Q_{Na}^{i} \phi F)/(RT)) + [c_{Ca}^{i}/K_{Na}^{i} K_{Na}^{i} K_{Na}^{i}]$$
$$d'' = 1 + c_{Ca}^{i}/K_{Ca}^{i} + c_{Ca}^{i}/K_{Ca}^{i} \exp((-Q_{Na}^{i} \phi F)/(RT)) + [c_{Ca}^{i}/K_{Na}^{i} K_{Na}^{i} K_{Na}^{i}]$$

The sodium potassium pump current I_{NaK} is an electrogenic active transport mechanism with a net outward current exchanging three Na$^+$ ions and two K$^+$ ions. Contributes significantly to the total background current during pacemaker depolarization, it is defined as follows.

$$I_{NaK} = I_{NaK}^{max} c_{Na}^{i}/[c_{Na}^{i} + K_{Na}^{i}] c_{K}^{i}/[c_{K}^{i} + K_{K}^{i}] [1 - [(\phi - 40)/211]^2]$$ \hspace{1cm} (12)$$
The delayed rectifying potassium current I_{KNa} plays a major role in action potential repolarization. It is modeled using a single energy barrier formulation

$$I_{KNa} = g_x K_{PNa} c_{KNa}^{0.59} [c_{Na}^{i} - c_{Na}^{i} \exp(-[\phi F]/(RT))]$$ \hspace{1cm} (13)$$
governed by the delayed rectifier current activation gate g_x.

$$g_x = [g_x^\infty - g_x]/\tau_x$$
$$g_x^\infty = 1/[1 + \exp(-[\phi + 25.1]/7.4)]$$
$$\tau_x = 1/[17 \exp(0.0398\phi) + 0.211 \exp(-0.051\phi)]$$ \hspace{1cm} (14)$$
The channelrhodopsin photocurrent

$$I_{CH2} = C_{CH2} g_{CH2} [\phi - \phi_{CH2}]$$ \hspace{1cm} (15)$$
is governed by the channelrhodopsin activating gating variable g_{CH2}.

$$g_{CH2} = \varepsilon n_{pho} - [\varepsilon n_{pho} + I_{C}] g_{CH2} - \varepsilon n_{pho} \varepsilon r$$
$$g_r = I_{C} g_{CH2} - I_{C} g_r$$
$$C_{CH2} = [0.05 \phi^2 - 0.0692 \phi + 9.442]$$
$$\phi_{CH2} = [RT]/[F] [\log (c_{Na}^{i}/c_{Na}^{i}) - \log (c_{Na}^{i}/c_{Na}^{i}) + \phi_{Na, 0}]$$

2
which is directly correlated to photostimulation $\varepsilon n_{\text{pho}}$. Here, C_{ChR2} is the channelrhodopsin conductance,

$$C_{\text{ChR2}} = \frac{1}{g_{\text{ChR2}}^0 [\phi_{\text{clamp}} - \phi_{\text{ChR2}}]} I_{\text{ChR2}}^0$$ (17)

expressed in terms of a quadratic polynomial, which we have identified to $I_{\text{ChR2}}^0/[\phi_{\text{clamp}} - \phi_{\text{ChR2}}] = 0.00266 \phi^2 - 0.003658 \phi + 0.498819$ using a least squares fit, with a plateau value of $g_{\text{ChR2}}^0 = 0.05283$. Moreover, ϕ_{ChR2} is the reversal potential of channelrhodopsin,

$$\phi_{\text{ChR2}} = \phi_{\text{Na}} - \tilde{\phi}_{\text{Na}}$$ (18)

which we approximate as the difference of the concentration-dependent reversal potential for sodium ϕ_{Na} and the experimental reversal potential $\tilde{\phi}_{\text{Na}}$, with

$$\phi_{\text{Na}} = \frac{RT}{zF} \log \left(\frac{c_{\text{Na}}^e}{c_{\text{Na}}^i} \right)$$ and $$\tilde{\phi}_{\text{Na}} = \frac{RT}{zF} \log \left(\frac{c_{\text{Na}}^e}{c_{\text{Na}}^i} \right) + \tilde{\phi}_{\text{Na},0}.$$ (19)

Here, we choose $c_{\text{Na}}^i = 153$ mM and $c_{\text{Na}}^e = 5$ mM, calibrated to match the experimental reversal potential of ChR2, and $c_{\text{Na}}^i = 140$ mM, $c_{\text{Na}}^e = 5$ mM, and $\tilde{\phi}_{\text{Na},0} = 1.79$ mV calibrated for our cell model to reach a steady state with the experimentally observed natural frequency of 0.7 Hz [1].

Potassium concentrations, currents, and gating variables

The intra- and extracellular potassium concentrations

$$c_{\text{K}}^i = -\frac{1}{\tau_k} [I_{\text{KK}} + I_{\text{SK}} + I_{\text{IK}} - 2I_{\text{NaK}}]$$

$$c_{\text{K}}^e = -\frac{1}{\tau_k} [I_{\text{KK}} + I_{\text{SK}} + I_{\text{IK}} - 2I_{\text{NaK}}] + \frac{1}{\tau_k} [c_{\text{K}}^i - c_{\text{K}}^e]$$ (20)

are changing in response to the delayed rectifying potassium current I_{KK}, the background potassium current I_{SK}, the hyperpolarization activated potassium current I_{IK}, and the sodium potassium pump I_{NaK}. The delayed rectifying potassium current

$$I_{\text{KK}} = g_s K c_{\text{K}}^{0.65} [c_{\text{K}}^i - c_{\text{K}}^e] \exp(-[\phi F]/[RT])$$ (21)

is governed by the delayed rectifier current activation gate g_s.

$$g_s = [g_s^0 - g_s] / \tau_s$$

$$g_s^0 = 1/[1 + \exp(-[\phi + 25.1]/7.4)]$$

$$\tau_s = 1/[17 \exp(0.0398\phi) + 0.211 \exp(-0.051\phi)]$$ (22)

The background potassium current is introduced as leakage using the concept of a single rate-limiting energy barrier at the inner surface of the membrane.

$$I_{\text{SK}} = K_{\text{SK}} c_{\text{K}}^{1.83} [c_{\text{K}}^i - c_{\text{K}}^e] \exp([\phi F]/[RT])]$$ (23)

The hyperpolarization activated sodium current is modeled as

$$I_{\text{IK}} = g_y [c_{\text{K}}^{1.83} - K_{\text{m,f}}^{1.83}] C_{\text{IK}} [\phi - \phi_{\text{K}}]$$ (24)

governed by the activation gate g_y.

$$g_y = \alpha_y [1 - g_{y}] - \beta_y g_{y}$$

$$\alpha_y = 0.36[\phi + 148.8]/[\exp(0.066[\phi + 148.8]) - 1]$$

$$\beta_y = 0.1[\phi + 87.3]/[1 - \exp(-0.21[\phi + 87.3])]$$ (25)

Calcium concentrations, currents, and gating variables

The intra- and extracellular calcium concentrations

$$c_{\text{Ca}}^i = -\frac{1}{\tau_{\text{Ca}}} [I_{\text{CaL}} + I_{\text{CaT}} - 2I_{\text{NaCa}} - I_{\text{up}} + I_{\text{rel}}]$$

$$c_{\text{Ca}}^e = +\frac{1}{\tau_{\text{Ca}}} [I_{\text{CaL}} + I_{\text{CaT}} - 2I_{\text{NaCa}}] + \frac{1}{\tau_{\text{Ca}}} [c_{\text{Ca}}^i - c_{\text{Ca}}^e]$$ (26)

are evolving in response to the long-lasting calcium current I_{CaL}, the transient calcium current I_{CaT}, the sodium calcium exchanger I_{NaCa}, and the sarcoplasmic reticulum calcium uptake and release I_{up} and I_{rel}. The long-lasting L-type calcium current is key to generate the fast upstroke of the action potential. It also crucially determines the action potential profile and the slope of pacemaker depolarization.

$$I_{\text{CaL}} = C_{\text{CaL}} g_{\text{CaL}} g_n g_{\text{Na}} g_{\text{Ca}} [\phi - \phi_{\text{Ca}} + 75]$$ (27)
It is governed by the activation gate g_{dL}, the voltage dependent inactivation gate g_{fL}, and the calcium dependent inactivation gate g_{fCa}.

$$
\dot{g}_{dL} = \left[g_{\infty}^{dL} - g_{dL} \right]/\tau_{dL}
$$

$$
g_{\infty}^{dL} = 1/[1 + \exp(-[\phi + 6.6]/4.6)]
$$

$$
\tau_{dL} = 0.002
$$

$$
\dot{g}_{fL} = \left[g_{\infty}^{fL} - g_{fL} \right]/\tau_{fL}
$$

$$
g_{\infty}^{fL} = 1/[1 + \exp([\phi + 25]/6)]
$$

$$
\tau_{fL} = 0.031 + 1/[1 + \exp([\phi + 37.6]/8.1)]
$$

$$
g_{fCa} = \alpha_{fCa}[1 - g_{fCa}] - \beta_{fCa} c^{i}_{Ca} g_{fCa}
$$

The transient T-type calcium current I_{CaT} includes a more negative threshold potential and a more rapid rate of inactivation than the long lasting current I_{CaL}. Here, we model its activation and inactivation

$$
I_{CaT} = C_{CaT} g_{dT} g_{fT} \left[\phi - \phi_{Ca} + 75 \right]
$$

through the transient activation gate g_{dT} and the transient inactivation gate g_{fT}.

$$
\dot{g}_{dT} = \left[g_{\infty}^{dT} - g_{dT} \right]/\tau_{dT}
$$

$$
g_{\infty}^{dT} = 1/[1 + \exp(-[\phi + 23]/6.1)]
$$

$$
\tau_{dT} = 0.0006 + 0.0054/[1 + \exp(0.03[\phi + 100])]
$$

$$
\dot{g}_{fT} = \left[g_{\infty}^{fT} - g_{fT} \right]/\tau_{fT}
$$

$$
g_{\infty}^{fT} = 1/[1 + \exp([\phi + 75]/6.6)]
$$

$$
\tau_{fT} = 0.001 + 0.04/[1 + \exp(0.08[\phi + 65])]
$$

We model sarcoplasmic reticulum kinetics through two compartments corresponding to Ca$^{+}$ update and release stores,

$$
I_{up} = \alpha_{up} c^{i}_{Ca}^{1/2}/[c^{i}_{Ca}^{1/2} + K_{Ca,up}^{m2}]
$$

$$
I_{tr} = \alpha_{tr} c^{tr}_{Ca} / [c^{i}_{Ca}^{1/2} + K_{Ca,up}^{m2}]
$$

$$
I_{rel} = \alpha_{rel} c^{rel}_{Ca} / [c^{i}_{Ca}^{1/2} + K_{Ca,rel}^{m2}]
$$

where $\alpha_{rel} = 2 F V^{rel} / \tau_{rel}$ and $\alpha_{tr} = 2 F V^{rel} / \tau_{tr}$. Last, these three sarcoplasmic reticulum currents define the sarcoplasmic reticulum calcium uptake and release.

$$
\dot{c}^{up}_{Ca} = -\frac{1}{\tau_{up}} \left[I_{up} - I_{tr} \right]
$$

$$
\dot{c}^{rel}_{Ca} = +\frac{1}{\tau_{rel}} \left[I_{tr} - I_{rel} \right]
$$

All the symbols and the initial values of the electrical potential and all chemical state variables are summarized in Table 1, and all model parameters are summarized in Table 2. Except for the intracellular sodium concentration c^{i}_{Na}, which is directly influenced by the channelrhodopsin current I_{ChR2}, the ionic concentration profiles closely resemble the ones reported for the plain cell model without channelrhodopsin [3, 4].
Table 1: Electrical potential and chemical state variables. Symbols, physical interpretations, and initial values.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>membrane potential</td>
<td>-64.9 mV</td>
</tr>
<tr>
<td>c_{Na}^e</td>
<td>extracellular sodium concentration</td>
<td>139.9929 mM</td>
</tr>
<tr>
<td>c_{K}^e</td>
<td>extracellular potassium concentration</td>
<td>5.4620 mM</td>
</tr>
<tr>
<td>c_{Ca}^e</td>
<td>extracellular calcium concentration</td>
<td>1.9983 mM</td>
</tr>
<tr>
<td>c_{Na}^i</td>
<td>cytosolic sodium concentration</td>
<td>4.9865 mM</td>
</tr>
<tr>
<td>c_{K}^i</td>
<td>cytosolic potassium concentration</td>
<td>154.1415 mM</td>
</tr>
<tr>
<td>c_{Ca}^i</td>
<td>cytosolic free calcium concentration</td>
<td>0.000014 mM</td>
</tr>
<tr>
<td>c_{Ca}^{up}</td>
<td>cytosolic concentration in sarcoplastic reticulum uptake stroke</td>
<td>0.4113 mM</td>
</tr>
<tr>
<td>c_{Ca}^{rel}</td>
<td>cytosolic concentration in sarcoplastic reticulum release stroke</td>
<td>0.0944</td>
</tr>
<tr>
<td>g_m</td>
<td>gating variable controlling I_{Na} activation</td>
<td>0.0088</td>
</tr>
<tr>
<td>g_h</td>
<td>gating variable controlling I_{Na} inactivation</td>
<td>0.0157</td>
</tr>
<tr>
<td>g_y</td>
<td>gating variable controlling I_{f} activation</td>
<td>0.0038</td>
</tr>
<tr>
<td>g_x</td>
<td>gating variable controlling I_{K} activation</td>
<td>0.6103</td>
</tr>
<tr>
<td>g_{dL}</td>
<td>gating variable controlling I_{CaL} activation</td>
<td>0.000001</td>
</tr>
<tr>
<td>g_{fL}</td>
<td>gating variable controlling I_{CaL} inactivation</td>
<td>0.1137</td>
</tr>
<tr>
<td>g_{fCa}</td>
<td>gating variable controlling I_{CaL} Ca$^{2+}$-dependent inactivation</td>
<td>0.3362</td>
</tr>
<tr>
<td>g_{fT}</td>
<td>gating variable controlling I_{CaT} activation</td>
<td>0.0007</td>
</tr>
<tr>
<td>g_{fT}</td>
<td>gating variable controlling I_{CaT} inactivation</td>
<td>0.2001</td>
</tr>
</tbody>
</table>
Table 2: Model parameters. Symbols, physical interpretations, and values.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{Ca}</td>
<td>rate coefficient of g_{Ca} calcium-inhibition gating variable of I_{CaL}</td>
<td>3 s^{-1}</td>
</tr>
<tr>
<td>β_{Ca}</td>
<td>rate coefficient of g_{Ca} calcium-inhibition gating variable of I_{CaL}</td>
<td>40 000 s^{-1} mM^{-1}</td>
</tr>
<tr>
<td>τ_{b}</td>
<td>time constant of transfer from vasculature buffer to extracellular space</td>
<td>0.1 s</td>
</tr>
<tr>
<td>τ_{rel}</td>
<td>time constant of sarcoplasmic reticulum release</td>
<td>0.005 s</td>
</tr>
<tr>
<td>τ_{tr}</td>
<td>time constant of transfer between sarcoplasmic reticulum uptake and release stores</td>
<td>0.4 s</td>
</tr>
<tr>
<td>c_{b}</td>
<td>calcium concentration in vasculature buffer</td>
<td>2 mM</td>
</tr>
<tr>
<td>c_{Na}</td>
<td>sodium concentration in vasculature buffer</td>
<td>5.4 mM</td>
</tr>
<tr>
<td>c_{K}</td>
<td>potassium concentration in vasculature buffer</td>
<td>039 mM</td>
</tr>
<tr>
<td>C_{Na}</td>
<td>membrane conductance of I_{Na} channels</td>
<td>0.24 nS</td>
</tr>
<tr>
<td>C_{CaL}</td>
<td>membrane conductance of I_{CaL} channels</td>
<td>400 nS</td>
</tr>
<tr>
<td>C_{CaT}</td>
<td>membrane conductance of I_{CaT} channels</td>
<td>85 nS</td>
</tr>
<tr>
<td>I_{NaK}</td>
<td>maximum value of I_{NaK} at $\phi = 40$ mV</td>
<td>226 pA</td>
</tr>
<tr>
<td>C_{K}</td>
<td>dissociation parameter for magnitude of $I_{K, NaCa}$</td>
<td>0.07 pA/mM</td>
</tr>
<tr>
<td>K_{1}</td>
<td>dissociation constant for cytosolic Na$^{+}$ binding to 1st site on I_{NaCa} carrier</td>
<td>395.3 mM</td>
</tr>
<tr>
<td>K_{2}</td>
<td>dissociation constant for extracellular Na$^{+}$ binding to 1st site on I_{NaCa} carrier</td>
<td>1628 mM</td>
</tr>
<tr>
<td>K_{3}</td>
<td>dissociation constant for cytosolic Na$^{+}$ binding to 2nd site on I_{NaCa} carrier</td>
<td>2.289 mM</td>
</tr>
<tr>
<td>K_{4}</td>
<td>dissociation constant for extracellular Na$^{+}$ binding to 2nd site on I_{NaCa} carrier</td>
<td>561.4 mM</td>
</tr>
<tr>
<td>K_{5}</td>
<td>dissociation constant for cytosolic Na$^{+}$ binding to 3rd site on I_{NaCa} carrier</td>
<td>26.44 mM</td>
</tr>
<tr>
<td>K_{6}</td>
<td>dissociation constant for extracellular Na$^{+}$ binding to 3rd site on I_{NaCa} carrier</td>
<td>4.663 mM</td>
</tr>
<tr>
<td>K_{7}</td>
<td>dissociation constant for extracellular Na$^{+}$ and Ca$^{2+}$ simultaneous binding to I_{NaCa} carrier</td>
<td>26.44 mM</td>
</tr>
<tr>
<td>K_{8}</td>
<td>dissociation constant for extracellular Ca$^{2+}$ binding to I_{NaCa} carrier</td>
<td>3.663 mM</td>
</tr>
<tr>
<td>K_{m}</td>
<td>dissociation parameter for magnitude of I_{K}</td>
<td>0.26 pA/$mM^{1.59}$</td>
</tr>
<tr>
<td>$K_{m, Ca, rel}$</td>
<td>half-maximal activation level of I_{rel} to c_{Ca}^{+}</td>
<td>0.001 mM</td>
</tr>
<tr>
<td>$K_{m, Ca, up}$</td>
<td>half-maximal activation level of I_{up} to c_{Ca}^{+}</td>
<td>0.0005 mM</td>
</tr>
<tr>
<td>$K_{m, f}$</td>
<td>half-maximal activation level of I_{f} to c_{Ca}^{+}</td>
<td>10.3 mM</td>
</tr>
<tr>
<td>$K_{m, K}$</td>
<td>half-maximal activation level of I_{K} to c_{Ca}^{+}</td>
<td>1 mM</td>
</tr>
<tr>
<td>$K_{m, Na}$</td>
<td>half-maximal activation level of I_{Na} to c_{Ca}^{+}</td>
<td>40 mM</td>
</tr>
<tr>
<td>k_{NaCa}</td>
<td>scaling factor for I_{NaCa}</td>
<td>4000 pA</td>
</tr>
<tr>
<td>P_{Na}</td>
<td>fractional permeability of I_{K} to c_{Na}^{+}</td>
<td>0.035</td>
</tr>
<tr>
<td>Q_{Na}</td>
<td>fractional charge movement during cytosolic Ca$^{2+}$ occlusion reaction of I_{NaCa} carrier</td>
<td>0.1369</td>
</tr>
<tr>
<td>Q_{Ca}</td>
<td>fractional charge movement during extracellular Ca$^{2+}$ occlusion reaction of I_{NaCa} carrier</td>
<td>0</td>
</tr>
<tr>
<td>Q_{Na}</td>
<td>fractional charge movement during Na$^{+}$ occlusion reactions of I_{NaCa} carrier</td>
<td>0.4315</td>
</tr>
<tr>
<td>C_{Na}</td>
<td>cell capacitance</td>
<td>32 pF</td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant</td>
<td>96.49 $C/mmol$</td>
</tr>
<tr>
<td>R</td>
<td>universal gas constant</td>
<td>8.32 $J/mol/K$</td>
</tr>
<tr>
<td>T</td>
<td>absolute temperature</td>
<td>310 K</td>
</tr>
<tr>
<td>V_{e}</td>
<td>extracellular cleft volume</td>
<td>0.5 pl</td>
</tr>
<tr>
<td>V_{i}</td>
<td>cytosolic volume</td>
<td>2.5 pl</td>
</tr>
<tr>
<td>V_{rel}</td>
<td>sarcoplasmic reticulum release store volume</td>
<td>0.015 pl</td>
</tr>
<tr>
<td>V_{up}</td>
<td>sarcoplasmic reticulum uptake store volume</td>
<td>0.035 pl</td>
</tr>
</tbody>
</table>
Computational model of light-activated cells

For the computational hESC-ChR2-CM model, we apply a finite element discretization to solve the transmembrane potential propagation, \(\phi = f^\phi(\phi, g_{\text{gate}}, c_{\text{ion}}) + \text{div} q(\phi) \), in space, and a finite difference discretization to solve the evolution equations for the state variables of the chemical problem. \(g_{\text{gate}} = \left[g_{\text{gate}}^0(\phi, c_{\text{ion}}) - g_{\text{gate}} \right] / \tau_{\text{gate}}(\phi) \) and \(\dot{c}_{\text{ion}} = \dot{c}_{\text{ion}}(\phi, g_{\text{gate}}, c_{\text{ion}}) \), in time as documented in [6, 18]. In particular, the transmembrane potential \(\phi \) of the electrical problem is introduced globally as a nodal degree of freedom, while the gating variables \(g_{\text{gate}} \) and the ion concentrations \(c_{\text{ion}} \) of the chemical problem are treated locally as internal variables on the integration point level. The resulting staggered system is solved with an incremental iterative Newton-Raphson solution procedure based on the consistent linearization of the discrete excitation problem [7, 8]. With the discretizations in space and time, the discrete algorithmic residual \(R^\phi_j \) of the electrical problem, \(\phi = f^\phi(\phi, g_{\text{gate}}, c_{\text{ion}}) + \text{div} q(\phi) \), takes the following explicit representation.

\[
R^\phi_j = A^{n_i}_{v=1} \int_{V} \left[\Delta^i \phi - \phi^0 \right] - N^i f^\phi dV + \nabla N^j \cdot q \right] dV \neq 0
\]

(33)

The operator \(A \) symbolizes the assembly of all element contributions at the element nodes \(i = 1, \ldots, n_{\text{en}} \) to the overall residual at the global node points \(I = 1, \ldots, n_{\text{nd}} \). \(N \) are the standard isoparametric shape functions on the element level \(B^e \). \(\phi^0 \) denotes the transmembrane potential of the previous time step, and \(\Delta t \) is the current time increment with \(\phi^0 = [\phi - \phi^0]/\Delta t \), where we have applied an unconditionally stable Euler backward time stepping scheme [11, 18]. To solve the discrete system of nonlinear equations (33), we suggest an incremental iterative Newton-Raphson solution technique based on the consistent linearization of the residual which introduces the global iteration matrix \(K_{ij}^\phi = \frac{\partial f^\phi}{\partial \phi}R^\phi_j \).

\[
K_{ij}^\phi = A^{n_i}_{v=1} \int_{V} \left[N^i \frac{1}{\Delta t} N^j - N^i \frac{d^\phi f^\phi}{\partial \phi} + \nabla N^i \cdot D \cdot \nabla N^j \right] dV
\]

(34)

For each incremental iteration, we update the global vector of unknowns \(\phi_I = \phi_I - \sum_{j=1}^{n_{\text{en}}} K_{ij}^\phi R^\phi_j \) at all global nodes \(I \). The source term \(f^\phi \) in \(R^\phi_j \) and its consistent algorithmic linearization \(d_{\phi} f^\phi \) in equation (34) depend on the particular ionic cell model characterized through the evolution equations for the gating variables, \(\dot{g}_{\text{gate}} = \left[g_{\text{gate}}^0(\phi, c_{\text{ion}}) - g_{\text{gate}} \right] / \tau_{\text{gate}}(\phi) \), and for the ion concentrations, \(\dot{c}_{\text{ion}} = \dot{c}_{\text{ion}}(\phi, g_{\text{gate}}, c_{\text{ion}}) \). In our case, these are specified through the autorhythmic cell model [4], enhanced by the channelrhodopsin current \(I_{\text{ChR2}} \) modeled through the three-state photocycle [14]. We discretize the governing equations for the chemical state variables, \(g_{\text{gate}} = \left[g_{\text{gate}}^0(\phi, c_{\text{ion}}) - g_{\text{gate}} \right] / \tau_{\text{gate}}(\phi) \) and \(\dot{c}_{\text{ion}} = \dot{c}_{\text{ion}}(\phi, g_{\text{gate}}, c_{\text{ion}}) \), in time using an unconditionally stable Euler backward scheme, linearize them consistently, and solve them on the integration point level using a local Newton iteration as previously described [2, 18]. For the global solution of the electrochemical problem, we apply our discrete finite element solution algorithm [6]. Here, this algorithm is embedded in the general multipurpose nonlinear finite element program FEAP [15], although, in principle, the above equations for \(R^\phi_j \) and \(K_{ij}^\phi \) can interface with any commercially available finite element package.
Computational model of a human heart

To illustrate the features of the proposed technique, we simulate the photostimulation of a human heart stimulated at different pacing sites. We virtually inject hESC-ChR2-CM into a human heart model, for which the injected cells are modeled as described in the previous sections [4], while all other cells are modeled as standard ventricular CM [16, 18]. Following the literature, we model cell injection by modifying the material properties of the myocardial wall at the injection sites [17]. Here, these regions span a volume of approximately 0.02cm³, which is roughly the size of the 0.6×0.3×0.1cm³ large atrioventricular node in humans [10], corresponding to approximately 10⁷ cells. To generate a patient-specific human heart model, we post-process magnetic resonance images taken at different depths along the heart’s long axis, see Figure 1. On these two-dimensional slices, we use semi-automated image processing tools to section and isolate cardiac muscle. To create monochrome images with sharply defined boundaries from the raw and noisy grayscale images, we apply thresholding and binary masking. From the resulting black and white slices, we create a preliminary triangular surface mesh, which we convert into the final tetrahedral volume mesh consisting of 3,129 nodes and 11,347 tetrahedral elements as previously described [11], see Figure 1.

Figure 1: Generation of patient-specific heart model. Magnetic resonance imaging generates a sequence of two-dimensional images at different depths (top, left). Cardiac muscle tissue is sectioned semi-manually and isolated using standard image processing techniques (top, right). Thresholding and binary masking convert the raw grayscale images to monochrome images with sharply defined boundaries (bottom, left). From these slices, a preliminary triangular surface mesh is created and converted to the final tetrahedral volume mesh consisting of 3,129 nodes and 11,347 tetrahedral elements (bottom, right).
Supplemental sensitivity studies

Sensitivity with respect to light exposure time

Throughout this manuscript, for technical reasons, we have applied a stimulation pulse width of 100 ms for micro-electrode array recordings, and of 1000 ms for whole-cell patchclamp electrophysiology. Since the rapid upstroke of the action potential takes place in the first 10 ms of the cell cycle [4], the pulse width could potentially be decreased to 10 ms or less. This reduction would favorably limit light exposure time and only impact the intracellular sodium concentration during the early phase of the action potential upstroke. Figure 2 illustrates the results of a supplemental sensitivity study with respect to light exposure time. The graph displays the capture rate at different pulse widths of 5, 10, 50, and 100 ms and at different frequencies of 0.5, 1.0, and 1.5 Hz. It demonstrates that, at lower frequencies, all pulse widths achieve a high capture rate of close to 100%. At higher frequencies, however, larger pulse widths are needed to obtain a 100% capture rate [1].

![Figure 2: Sensitivity of capture rate with respect to photostimulation at different pulse widths of 5, 10, 50, and 100 ms and at different frequencies of 0.5, 1.0, and 1.5 Hz. At lower frequencies, all pulse widths achieve a high capture rate of close to 100%. At higher frequencies, larger pulse widths are needed to obtain a 100% capture rate.](image)

Sensitivity with respect to light intensity

Figure 3 illustrates the sensitivity of the photocurrent I_{ChR2} with respect to light intensity, normalized by the peak current. Experimental photocurrents are shown as solid circles, computational photocurrents are shown as open circles. Both peak and plateau values of the photocurrent display an almost linear behavior for varying light intensities at 12.5, 25, 50, and 100 %. This matches favorably with experimental results by [9] and with the computational results by [13] reported in the literature.

![Figure 3: Sensitivity of channelrhodopsin photocurrent I_{ChR2} with respect to light intensity, shown at 5, 10, 50, and 100 %. Both peak and plateau values of the photocurrent display an almost linear behavior for varying light intensities. Experimental photocurrents are shown as solid circles, computational photocurrents are shown as open circles.](image)
References

